Just want to include something from the fbi linky NTS included in post #228
"Conclusions
There are several possible conclusions that can be reached from the microscopic examination and comparison of human hairs. When the questioned hair(s) is compared to the known hairs using a comparison microscope, the full length of the hair(s) as well as the full range of microscopic characteristics must be considered. Following their analyses, hair examiners may conclude the following:
The questioned hair exhibits the same microscopic characteristics as the hairs in the known hair sample and, accordingly, is consistent with originating from the source of the known hairs.
The questioned hair is microscopically dissimilar to the hairs found in the known hair sample and, accordingly, cannot be associated to the source of the known hairs.
Similarities and slight differences were observed between the questioned hair and hairs in the known hair sample. Accordingly, no conclusion could be reached as to whether the questioned hair originated from the same source as the known hairs.
When a hair exhibits the same microscopic characteristics as hairs in the known hair sample, a qualifying statement may be added to the report. This statement may read as follows:
Hair comparisons are not a basis for absolute personal identification. It should be noted, however, that because it is unusual to find hairs from two different individuals that exhibit the same microscopic characteristics, a microscopic association or match is the basis for a strong association."
...SoThe remains are identified as Caylee's. The hair with the remains is Caylee's. The hair with the remains is microscopically similiar to the hair in the trunk which exhibit characteristics of having come from a dead body. Finding hairs from 2 different individuals that exhibit the same microscopic characteristics is rare.
So we can either conclude the trunk hair is Caylee's OR the weather changed the hair in the woods to be microscopically similiar to Caylee's hair. Wow! What are the odds.